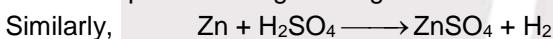


Equivalent Concept & Titrations

Section (A) : Classical Concept of Equivalent weight / Mass, Equivalent weight, n-factor and Normality for Acid, Base and Precipitate

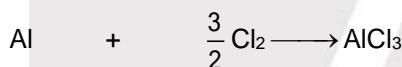
Concept of equivalents :

Equivalent mass of element : Number of parts by mass of an element which reacts or displaces from a compound 1.008 parts by mass of hydrogen, 8 parts by mass of oxygen and 35.5 parts by mass of chlorine, is known as the equivalent weight of that element.


$$48 \text{ g} \quad 32 \text{ g}$$

$$12 \text{ g} \quad 8 \text{ g}$$

\therefore 32 g of O_2 reacts with 48 g of Mg


$$\therefore 8 \text{ g of } \text{O}_2 = \frac{48 \times 8}{32} = 12 \text{ g}$$

\therefore Equivalent weight of Mg = 12

$$65.5 \text{ g} \quad 32.75$$

$$\therefore \text{Equivalent weight of Zn} = \frac{65.5}{2} = 32.75 \text{ g}$$

$$27 \text{ g} \quad \frac{3}{2} \times 71 \text{ g}$$

111.5 g chlorine reacts with 27 g of Al.

$$\therefore 35.5 \text{ chlorine reacts with} = \frac{27 \times 35.5}{111.5} 9.0 \text{ g of Al}$$

$$\therefore \text{Equivalent weight of aluminium} = \frac{27}{3} = 9.0$$

As we can see from the above examples that equivalent weight is the ratio of atomic weight and a factor (say n-factor or valency factor) which in the above three cases is their respective valencies.

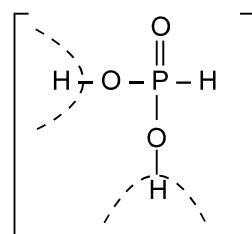
Equivalent weight (E) :

$$\text{In general, Eq. wt. (E)} = \frac{\text{Atomic weight or Molecular weight}}{\text{valency factor(v.f)}} = \frac{\text{Mol. wt.}}{\text{n-factor}} = \frac{M}{x}$$

$$\text{Number of equivalents} = \frac{\text{mass of species}}{\text{eq. wt. of that species}}$$

For a solution, Number of equivalents = $N_1 V_1$, where N is the normality and V is the volume in litres

- Equivalent mass is a pure number which, when expressed in gram, is called gram equivalent mass.
- The equivalent mass of a substance may have different values under different conditions.
- There is no hard and fast rule that equivalent weight will be always less than the molecular mass.


Valency factor calculation :

- **For Elements :** Valency factor = valency of the element.
- **For Acids :** Valency factor = number of replaceable H^+ ions per acid molecule.

Solved Examples

Ex-1 HCl ,

H₂SO₄H₃PO₄H₃PO₃

{see there are only two replaceable H+ ions}

Sol. Valency factor → 1 2 3 2

(Assume 100% dissociation)

Eq. wt. (E) → M/1 M/2 M/3 M/2

○ Replaceable hydrogen atoms are those hydrogen atoms which are attached with the atoms of group VI and group VII i.e. O, S, Se, Te & F, Cl, Br, I.

For Bases :

Valency factor = number of replaceable OH⁻ ions per base molecule.

Solved Examples

Ex-2. NaOH, KOH

Sol. v.f. → 1 1

Eq. wt. → M/1 M/1

○ Bases may be defined as the substances in which OH group is/are directly attached with group I elements (Li, Na, K, Rb, Cs), group II elements (Be, Mg, Ca, Ba) or group III elements (Al, Ga, In, Tl), transition metals, non-metallic cations like PH₄⁺, NH₄⁺ etc.

Acid-base reaction :

In case of acid base reaction, the valence factor is the actual number of H⁺ or OH⁻ replaced in the reaction. The acid or base may contain more number of replaceable H⁺ or OH⁻ than actually replaced in reaction.○ v. f. for base is the number of H⁺ ion from the acid replaced by each molecule of the base.

Solved Examples

Ex-3. 2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O

Base Acid

Sol. Valency factor of base = 1

Here, two molecule of NaOH replaced 2H⁺ ion from the H₂SO₄. Therefore, each molecule of NaOH replaced only one H⁺ ion of acid, so v.f. = 1.○ v. f. for acid is the number of OH⁻ replaced from the base by each molecule of acid.

Solved Examples

Ex-4. NaOH + H₂SO₄ → NaHSO₄ + H₂O

Base Acid

Sol. Valency factor of acid = 1

Here, one of molecule of H₂SO₄ replaced one OH⁻ from NaOH. Therefore, valency factor for H₂SO₄ is one

$$\therefore \text{Eq. wt. of H}_2\text{SO}_4 = \frac{\text{Mol.wt}}{1}$$

- **Salts :**
 - (a) In non-reacting condition
 - Valency factor = Total number of positive charge or negative charge present in the compound.

Solved Examples

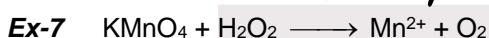
Ex-5.	Na ₂ CO ₃ ,	Fe ₂ (SO ₄) ₃ ,	FeSO ₄ .7H ₂ O
Sol.	V.f. 2	2×3 = 6	2
	Eq.wt. M/2	M/6	M/2

Note : In case of hydrated salt, positive/negative charge of water molecule is not counted.

- (b) In reacting condition

Solved Examples

Base Acid


Sol. It is an acid base reaction, therefore valency factor for Na₂CO₃ is one while in non-reacting condition, it will be two.

Section (B) : Equivalent weight, n-factor and Normality for Oxidant and Reductant

- (c) Equivalent weight of oxidising / reducing agents in a redox reaction

In case of redox change, v.f. = Total change in oxidation number per molecule .

Solved Examples

Sol. Mn in KMnO₄ is going from +7 to +2, so change in oxidation number per molecule of KMnO₄ is 5. So the valency factor of KMnO₄ is 5 and equivalent weight is $\frac{M}{5}$.

Normality :

Normality of a solution is defined as the number of equivalents of solute present in one litre (1000 mL) solution.

Let V mL of a solution is prepared by dissolving W g of solute of equivalent weight E in water.

- Number of equivalents of solute = $\frac{W}{E}$

VmL of solution contain $\frac{W}{E}$ equivalents of solute

∴ 1000 mL solution will contain $\frac{W \times 1000}{E \times V}$ equivalents of solute.

- Normality (N) = $\frac{W \times 1000}{E \times V}$

- Relations between Normality and Molarity :

Normality (N) = Molarity × Valency factor

or N × V (in mL) = M × V (in mL) × n

or milliequivalents = millimoles × n

Solved Examples

Ex-8. Calculate the normality of a solution containing 15.8 g of KMnO₄ in 50 mL acidic solution.

So. Normality (N) = $\frac{W \times 1000}{E \times V}$

Here W = 15.8 g, V = 50 mL E = $\frac{\text{molar mass of KMnO}_4}{\text{Valency factor}} = 158/5 = 31.6$

So, normality = 10 N

Ex-9. Calculate the normality of a solution containing 50 mL of 5 M solution of K₂Cr₂O₇ in acidic medium.

Sol. Normality (N) = Molarity × valency factor = 5 × 6 = 30 N

Section (C) : Equivalent Concept for Acid Base Titration and Precipitation Reactions**Law of Equivalence :**

The law states that one equivalent of an element combine with one equivalent of the other. In a chemical reaction, equivalents and milli equivalents of reactants react in equal amount to give same number of equivalents or milli equivalents of products separately.

Accordingly

(i) $aA + bB \rightarrow mM + nN$; meq of A = meq of B = meq of M = m.eq. of N
 (ii) In a compound M_xN_y ; meq of M_xN_y = meq of M = meq of N

Solved Examples

Ex-10. Find the number of moles of $KMnO_4$ needed to oxidise one mole Cu_2S in acidic medium.

Sol. From law of equivalence,

equivalents of Cu_2S = equivalents of $KMnO_4$

moles of $Cu_2S \times v.f.$ = moles of $KMnO_4 \times v.f.$

$$1 \times 8 = \text{moles of } KMnO_4 \times 5 \Rightarrow \text{moles of } KMnO_4 = 8/5$$

$$(\therefore v.f. \text{ of } Cu_2S = 2(2-1) + 1(4-(-2)) = 8 \text{ and } v.f. \text{ of } KMnO_4 = 1(7-2) = 5)$$

Ex-11. The number of moles of oxalate ions oxidized by one mole of MnO_4^- ion in acidic medium are :

(A) $\frac{5}{2}$ (B) $\frac{2}{5}$ (C) $\frac{3}{5}$ (D) $\frac{5}{3}$

Sol. Equivalents of $C_2O_4^{2-}$ = equivalents of MnO_4^-

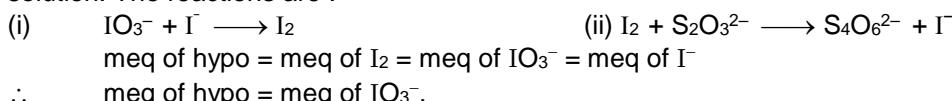
$$x(\text{mole}) \times 2 = 1 \times 5$$

$$(\therefore v.f. \text{ of } C_2O_4^{2-} = 2(4-3) = 2 \text{ and } v.f. \text{ of } MnO_4^- = 1(7-2) = 5).$$

$$x = \frac{5}{2} \text{ mole of } C_2O_4^{2-} \text{ ions.}$$

Drawbacks of Equivalent concept :

- Since equivalent weight of a substance (for example oxidising or reducing agent) may be variable hence it is better to use mole concept.



Thus, the number of equivalents of MnO_4^- will be different in the above two cases but number of moles will be same.

- Normality of any solution depends on reaction while molarity does not.**

For example : Consider 0.1mol $KMnO_4$ dissolved in water to make 1L solution. Molarity of this solution is 0.1 M. However, its normality is NOT fixed. It will depend upon the reaction in which $KMnO_4$ participates. e.g. if $KMnO_4$ forms Mn^{2+} , normality = $0.1 \times 5 = 0.5$ N. This same sample of $KMnO_4$, if employed in a reaction giving MnO_2 as product (Mn in +4 state), will have normality $0.1 \times 3 = 0.3$ N.

- The concept of equivalents is handy, but it should be used with care.** One must never equate equivalents in a sequence which involves same element in more than two oxidation states. Consider an example, KIO_3 reacts with KI to liberate iodine and liberated Iodine is titrated with standard hypo solution. The reactions are :

This is wrong. Note that I_2 formed by equation (i) has v.f. = $5/3$ & in equation (ii) has v.f. = 2.
 \therefore v.f. of I_2 in both the equation are different, therefore we cannot equate milli equivalents in sequence. In this type of case, students are advised to use mole concept.

Solved Examples

Ex-12 How many millilitres of 0.02 M KMnO_4 solution would be required to exactly titrate 25 mL of 0.2 M $\text{Fe}(\text{NO}_3)_2$ solution in acidic medium ?

Sol. **Method -1 : Mole concept method**

Starting with 25 mL of 0.2 M Fe^{2+} , we can write :

$$\text{Millimoles of } \text{Fe}^{2+} = 25 \times 0.2 \quad \dots\dots(1)$$

and in volume V (in milliliters) of the KMnO_4 ,

$$\text{Millimoles of } \text{MnO}_4^- = V (0.02) \quad \dots\dots(2)$$

The balanced reaction is :

This requires that at the equivalent point,

$$\begin{aligned} \frac{\text{m.moles of } \text{MnO}_4^-}{1} &= \frac{\text{m.moles of } \text{Fe}^{2+}}{5} \\ \therefore \frac{V(0.02)}{1} &= \frac{(25)(0.2)}{5} \quad (\text{from (1) \& (2)}) \end{aligned}$$

$$\therefore V = 50 \text{ mL.}$$

Method -2 : Equivalent Method :

At the equivalence point,

milliequivalents of MnO_4^- = milliequivalents of Fe^{2+}

$$M_1 \times v_1 \times V_1 = M_2 \times v_2 \times V_2$$

$$0.02 \times 5 \times V_1 = 0.2 \times 1 \times 25 \quad (\because \text{MnO}_4^- \longrightarrow \text{Mn}^{2+}; \text{v.f.} = 5, \text{Fe}^{2+} \longrightarrow \text{Fe}^{3+}; \text{v.f.} = 1)$$

$$\therefore V_1 = 50 \text{ mL.}$$

Section (D) : Equivalent Concept for Redox reactions, KMnO_4 / $\text{K}_2\text{Cr}_2\text{O}_7$ v/s Reducing Agents & their Redox Titration

Titrations :

Titration is a procedure for determining the concentration of a solution by allowing its carefully measured volume to react with a standard solution of another substance, whose concentration is known.

Standard solution - It is a solution whose concentration is known and is taken in burette. It is also called **Titrant**.

There are two type of titrants :

- **Primary titrants/standard** : These reagents can be accurately weighed and their solutions are not to be standardised before use.

Ex : Oxalic acid, $\text{K}_2\text{Cr}_2\text{O}_7$, AgNO_3 , CuSO_4 , ferrous ammonium sulphate, hypo etc.

- **Secondary titrants/standard** : These reagents cannot be accurately weighed and their solutions are to be standardised before use.

Ex : NaOH , KOH , HCl , H_2SO_4 , I_2 , KMnO_4 etc.

Titrate : Solution consisting of substance to be estimated, its generally taken in a beaker .

Equivalence point : It is the point when number of equivalents of titrant added becomes equal to number of equivalents of titrate.

At equivalence point :

$$n_1 V_1 M_1 = n_2 V_2 M_2$$

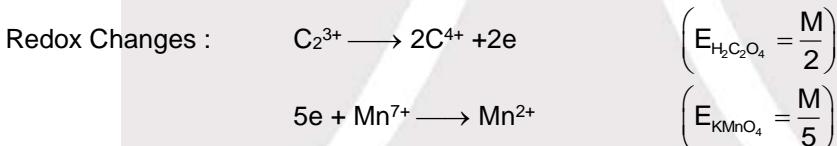
Indicator : An auxiliary substance added for physical detection of completion of titration at equivalence point. It generally show colour change on completion of titration.

Type of Titrations :

- Acid-base titrations (to be studied in Ionic equilibrium)
- **Redox Titrations**

Some Common Redox Titrations
Table of Redox Titrations : (Excluding Iodometric / Iodimetric titrations)

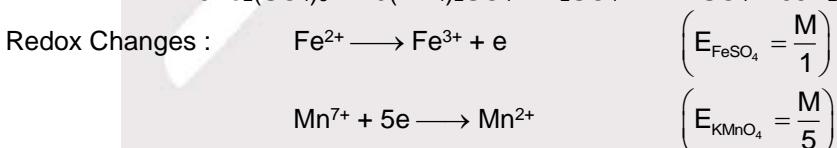
S.No.	Estimation of	By titrating with	Reactions	Relation* between OA and RA
1	Fe ²⁺	MnO ₄ ⁻	Fe ²⁺ → Fe ³⁺ + e ⁻	5Fe ²⁺ ≡ MnO ₄ ⁻
			MnO ₄ ⁻ + 8H ⁺ + 5e ⁻ → Mn ²⁺ + 4H ₂ O	Eq. wt. of Fe ²⁺ = M/1
2	Fe ²⁺	Cr ₂ O ₇ ²⁻	Fe ²⁺ → Fe ³⁺ + e ⁻	6Fe ²⁺ ≡ Cr ₂ O ₇ ²⁻
			Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻ → 2Cr ³⁺ + 7H ₂ O	Eq. wt. of Cr ₂ O ₇ ²⁻ = M/6
3	C ₂ O ₄ ²⁻	MnO ₄ ⁻	C ₂ O ₄ ²⁻ → 2CO ₂ + 2e ⁻	5C ₂ O ₄ ²⁻ ≡ 2MnO ₄ ⁻
			MnO ₄ ⁻ + 8H ⁺ + 5e ⁻ → Mn ²⁺ + 4H ₂ O	Eq. wt. of C ₂ O ₄ ²⁻ = M/2
4	H ₂ O ₂	MnO ₄ ⁻	H ₂ O ₂ → 2H ⁺ + O ₂ + 2e ⁻	5H ₂ O ₂ ≡ 2MnO ₄ ⁻
			MnO ₄ ⁻ + 8H ⁺ + 5e ⁻ → Mn ²⁺ + 4H ₂ O	Eq. wt. of H ₂ O ₂ = M/2
5	As ₂ O ₃	MnO ₄ ⁻	As ₂ O ₃ + 5H ₂ O → 2AsO ₄ ³⁻ + 10H ⁺ + 4e ⁻	Eq. wt. of As ₂ O ₃ = M/4
			MnO ₄ ⁻ + 8H ⁺ + 5e ⁻ → Mn ²⁺ + 4H ₂ O	
6	AsO ₃ ³⁻	BrO ₃ ⁻	AsO ₃ ³⁻ + H ₂ O → AsO ₄ ³⁻ + 2H ⁺ + 2e ⁻	Eq. wt. of AsO ₃ ³⁻ = M/2
			BrO ₃ ⁻ + 6H ⁺ + 6e ⁻ → Br ⁻ + 3H ₂ O	Eq. wt. of BrO ₃ ⁻ = M/6


Permanganate Titrations :

- KMnO₄ is generally used as an oxidising agent in acidic medium generally provided by dilute H₂SO₄.
- KMnO₄ works as self indicator persistent pink color is the indication of end point.
- Mainly used for estimation of Fe²⁺, oxalic acid, oxalates, H₂O₂ etc.

Solved Examples

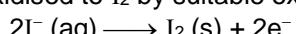
Ex-13 Write the balanced reaction of titration of KMnO₄ Vs oxalic acid in presence of H₂SO₄.


Sol. Reaction : $2\text{KMnO}_4 + 3\text{H}_2\text{SO}_4 + 5\text{H}_2\text{C}_2\text{O}_4 \rightarrow \text{K}_2\text{SO}_4 + 2\text{MnSO}_4 + 8\text{H}_2\text{O} + 10\text{CO}_2$

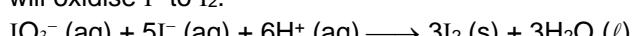
Indicator : KMnO₄ acts as self indicator.

Ex-14 Write the balanced reaction of titration of KMnO₄ vs ferrous ammonium sulphate in presence of H₂SO₄.

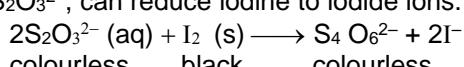
Sol. Reaction : $2\text{KMnO}_4 + 10[\text{FeSO}_4(\text{NH}_4)_2\text{SO}_4 \cdot 6\text{H}_2\text{O}] + 8\text{H}_2\text{SO}_4 \rightarrow 5\text{Fe}_2(\text{SO}_4)_3 + 10(\text{NH}_4)_2\text{SO}_4 + \text{K}_2\text{SO}_4 + 2\text{MnSO}_4 + 68\text{H}_2\text{O}$



Indicator : KMnO₄ acts as self indicator


Section (E) : Iodometric/Iodimetric Titration, Calculation of Available Chlorine from a sample of bleaching powder
Iodometric/Iodimetric Titrations :

Compound containing iodine are widely used in titrations.

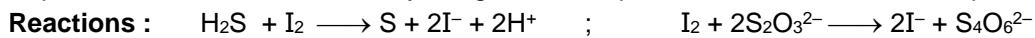

(i) Iodide ions can be oxidised to I₂ by suitable oxidising agent.

(ii) Iodine (V) ions, IO₃⁻, will oxidise I⁻ to I₂.

(iii) Thiosulphate ions, S₂O₃²⁻, can reduce iodine to iodide ions.

Iodometric Titrations (Titration Solution is of $\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$)

S.No.	Estimation of	Reaction	Relation between O.A. and R.A.
1.	I_2	$\text{I}_2 + 2\text{Na}_2\text{S}_2\text{O}_3 \rightarrow 2\text{NaI} + \text{Na}_2\text{S}_4\text{O}_6$ or $\text{I}_2 + 2\text{S}_2\text{O}_3^{2-} \rightarrow 2\text{I}^- + \text{S}_4\text{O}_6^{2-}$	$\text{I}_2 \equiv 2\text{I} \equiv 2\text{Na}_2\text{S}_2\text{O}_3$ Eq.wt. of $\text{Na}_2\text{S}_2\text{O}_3 = M/1$
2.		$2\text{CuSO}_4 + 4\text{KI} \rightarrow 2\text{CuI} + 2\text{K}_2\text{SO}_4 + \text{I}_2$ or $2\text{Cu}^{2+} + 4\text{I}^- \rightarrow 2\text{CuI} + \text{I}_2$ white ppt	$2\text{CuSO}_4 \equiv \text{I}_2 \equiv 2\text{I} \equiv 2\text{Na}_2\text{S}_2\text{O}_3$ Eq.wt. of $\text{CuSO}_4 = M/1$
3.	CaOCl_2	$\text{CaOCl}_2 + \text{H}_2\text{O} \rightarrow \text{Ca}(\text{OH})_2 + \text{Cl}_2$ $\text{Cl}_2 + 2\text{KI} \rightarrow 2\text{KCl} + \text{I}_2$	$\text{CaOCl}_2 \equiv \text{Cl}_2 \equiv \text{I}_2 \equiv 2\text{I} \equiv 2\text{Na}_2\text{S}_2\text{O}_3$
		$\text{Cl}_2 + 2\text{I}^- \rightarrow 2\text{Cl}^- + \text{I}_2$	Eq.wt. of $\text{CaOCl}_2 = M/2$
4.	MnO_2	$\text{MnO}_2 + 4\text{HCl}(\text{conc.}) \xrightarrow{\Delta} \text{MnCl}_2 + \text{Cl}_2 + 2\text{H}_2\text{O}$ $\text{Cl}_2 + 2\text{KI} \rightarrow 2\text{KCl} + \text{I}_2$ or $\text{MnO}_2 + 4\text{H}^+ + 2\text{Cl}^- \rightarrow \text{Mn}^{2+} + 2\text{H}_2\text{O} + \text{Cl}_2$ $\text{Cl}_2 + 2\text{I}^- \rightarrow \text{I}_2 + 2\text{Cl}^-$	$\text{MnO}_2 \equiv \text{Cl}_2 \equiv \text{I}_2 \equiv 2\text{Na}_2\text{S}_2\text{O}_3$ Eq.wt. of $\text{MnO}_2 = M/2$
5.	IO_3^-	$\text{IO}_3^- + 5\text{I}^- + 6\text{H}^+ \rightarrow 3\text{I}_2 + 3\text{H}_2\text{O}$	$\text{IO}_3^- \equiv 3\text{I}_2 \equiv 6\text{I} \equiv 6\text{Na}_2\text{S}_2\text{O}_3$ Eq.wt. of $\text{IO}_3^- = M/6$
6.	H_2O_2	$\text{H}_2\text{O}_2 + 2\text{I}^- + 2\text{H}^+ \rightarrow \text{I}_2 + 2\text{H}_2\text{O}$	$\text{H}_2\text{O}_2 \equiv \text{I}_2 \equiv 2\text{I} \equiv 2\text{Na}_2\text{S}_2\text{O}_3$ Eq.wt. of $\text{H}_2\text{O}_2 = M/2$
7.	Cl_2	$\text{Cl}_2 + 2\text{I}^- \rightarrow 2\text{Cl}^- + \text{I}_2$	$\text{Cl}_2 \equiv \text{I}_2 \equiv 2\text{I} \equiv 2\text{Na}_2\text{S}_2\text{O}_3$ Eq.wt. of $\text{Cl}_2 = M/2$
8.	O_3	$\text{O}_3 + 6\text{I}^- + 6\text{H}^+ \rightarrow 3\text{I}_2 + 3\text{H}_2\text{O}$	$\text{O}_3 \equiv 3\text{I}_2 \equiv 6\text{I} \equiv 6\text{Na}_2\text{S}_2\text{O}_3$ Eq.wt. of $\text{O}_3 = M/6$
9.	ClO^-	$\text{ClO}^- + 2\text{I}^- + 2\text{H}^+ \rightarrow \text{H}_2\text{O} + \text{Cl}^- + \text{I}_2$	$\text{ClO}^- \equiv \text{I}_2 \equiv 2\text{I} \equiv 2\text{Na}_2\text{S}_2\text{O}_3$ Eq.wt. of $\text{OCl}^- = M/2$
10.	$\text{Cr}_2\text{O}_7^{2-}$	$\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6\text{I}^- \rightarrow 3\text{I}_2 + 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$	$\text{Cr}_2\text{O}_7^{2-} \equiv 3\text{I}_2 \equiv 6\text{I}$ Eq.wt. of $\text{Cr}_2\text{O}_7^{2-} = M/6$
11.	MnO_4^-	$2\text{MnO}_4^- + 10\text{I}^- + 16\text{H}^+ \rightarrow 2\text{Mn}^{2+} + 5\text{I}_2 + 8\text{H}_2\text{O}$	$2\text{MnO}_4^- \equiv 5\text{I}_2 \equiv 10\text{I}$ Eq.wt. of $\text{MnO}_4^- = M/5$
12.	BrO_3^-	$\text{BrO}_3^- + 6\text{I}^- + 6\text{H}^+ \rightarrow \text{Br}^- + 3\text{I}_2 + 3\text{H}_2\text{O}$	$\text{BrO}_3^- \equiv 3\text{I}_2 \equiv 6\text{I}$ Eq.wt. of $\text{BrO}_3^- = M/6$
13.	As(V)	$\text{H}_2\text{AsO}_4 + 2\text{I}^- + 3\text{H}^+ \rightarrow \text{H}_3\text{AsO}_3 + \text{H}_2\text{O} + \text{I}_2$	$\text{H}_3\text{AsO}_4 \equiv \text{I}_2 \equiv 2\text{I}$ Eq.wt. of $\text{H}_3\text{AsO}_4 = M/2$
14.	HNO_2	$2\text{HNO}_2 + 2\text{I}^- \rightarrow \text{I}_2 + 2\text{NO} + \text{H}_2\text{O}$	$2\text{HNO}_2 \equiv \text{I}_2 \equiv 2\text{I}$ Eq.wt. of $\text{HNO}_2 = M/1$
15.	HClO	$\text{HClO} + 2\text{I}^- + \text{H}^+ \rightarrow \text{Cl}^- + \text{I}_2 + \text{H}_2\text{O}$	$\text{HClO} \equiv \text{I}_2 \equiv 2\text{Na}_2\text{S}_2\text{O}_3$ Eq.wt. of $\text{HClO} = M/2$

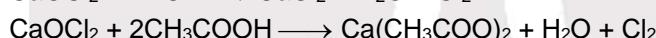

Iodimetric Titrations

S.No.	Estimation of	Reaction	Relation between O.A. and R.A.
1.	H_2S (in acidic medium)	$\text{H}_2\text{S} + \text{I}_2 \rightarrow \text{S} + 2\text{I}^- + 2\text{H}^+$	$\text{H}_2\text{S} \equiv \text{I}_2 \equiv 2\text{I}$ Eq.wt. of $\text{H}_2\text{S} = M/2$
2.	SO_3^{2-} (in acidic medium)	$\text{SO}_3^{2-} + \text{I}_2 + \text{H}_2\text{O} \rightarrow \text{SO}_4^{2-} + 2\text{I}^- + 2\text{H}^+$	$\text{SO}_3^{2-} \equiv \text{I}_2 \equiv 2\text{I}$ Eq.wt. of $\text{SO}_3^{2-} = M/2$
3.	Sn^{2+} (in acidic medium)	$\text{Sn}^{2+} + \text{I}_2 \rightarrow \text{Sn}^{4+} + 2\text{I}^-$	$\text{Sn}^{2+} \equiv \text{I}_2 \equiv 2\text{I}$ Eq.wt. of $\text{Sn}^{2+} = M/2$
4.	As(III) (at pH 8)	$\text{H}_2\text{AsO}_3^- + \text{I}_2 + \text{H}_2\text{O} \rightarrow \text{HAsO}_4^{2-} + 2\text{I}^- + 3\text{H}^+$	$\text{H}_2\text{AsO}_3^- \equiv \text{I}_2 \equiv 2\text{I}$ Eq.wt. of $\text{H}_2\text{AsO}_3^- = M/2$
5.	N_2H_4	$\text{N}_2\text{H}_4 + 2\text{I}_2 \rightarrow \text{N}_2 + 4\text{H}^+ + 4\text{I}^-$	$\text{N}_2\text{H}_4 = 2\text{I}_2 \equiv 4\text{I}$ Eq.wt. of $\text{N}_2\text{H}_4 = M/4$

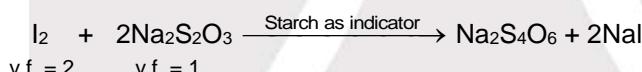
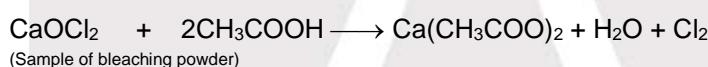
Solved Examples

Ex-15. The sulphur content of a steel sample is determined by converting it to H_2S gas, absorbing the H_2S in 10 mL of 0.005 M I_2 and then back titrating the excess I_2 with 0.002 M $Na_2S_2O_3$. If 10 mL $Na_2S_2O_3$ is required for the titration, how many milligrams of sulphur are contained in the sample?

Sol. Used millimoles of I_2 = (m.moles of I_2 taken initially) - $\frac{\text{m.moles of hypo used}}{2}$


$$= 0.005 \times 10 - 0.002 \times \frac{10}{2}$$

$$= 0.04 = \text{millimoles of } H_2S$$



$$\therefore \text{Weight of sulphur} = 0.04 \times 10^{-3} \times 32 \times 10^3 \text{ mg} = 1.28 \text{ mg.}$$

Calculation of available chlorine from a sample of bleaching powder :

The weight of available Cl_2 released from the given sample of bleaching powder on reaction with dilute acids or CO_2 is called available chlorine.

Method of determination :

End point is indicated by disappearance of blue colour.

Let M = Molarity of hypo ($Na_2S_2O_3$) solution

\therefore millimoles of Cl_2 produced = m.moles of I_2 used by hypo

$$= \frac{M \times V}{2} \text{ where } V = \text{vol of hypo solution used in ml.}$$

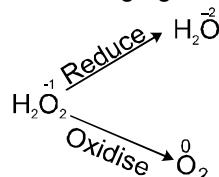
$$\text{mass of } Cl_2 \text{ produced} = \frac{M \times V \times 10^{-3}}{2} \times 71$$

$$= 35.5 \times M \times V \times 10^{-3}$$

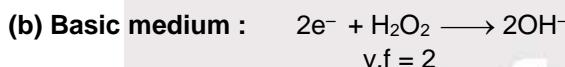
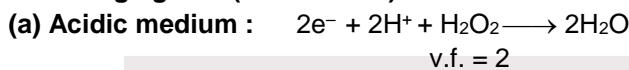
$$\therefore \% \text{ of available chlorine} = \frac{35.5 \times M \times V \times 10^{-3}}{W} \times 100$$

where W = amount of belaching powder taken in g.

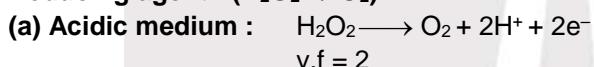
or $\% \text{ of available } Cl_2 = \frac{3.55 \times M \times V}{W}$


Solved Examples

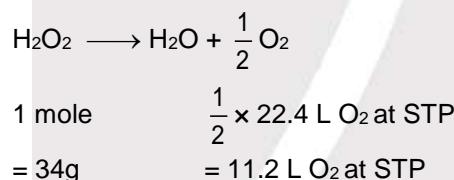
Ex-16 3.55 g sample of bleaching powder suspended in H_2O was treated with enough acetic acid and KI solution. Iodine thus liberated required 80 mL of 0.2 M hypo for titration. Calculate the % of available chlorine.



So. $\% \text{ of } Cl_2 = \frac{3.55 \times 0.2 \times 80}{3.55} = 16\%$

Section (F) : Volume strength of H₂O₂, Hardness of water**Hydrogen peroxide (H₂O₂)**


H₂O₂ can behave both like oxidising and reducing agent in both the mediums (acidic and basic).

- **Oxidising agent : (H₂O₂ → H₂O)**


- **Reducing agent : (H₂O₂ → O₂)**

Volume strength of H₂O₂ : Strength of H₂O₂ is represented as 10V , 20 V , 30 V etc.

20V H₂O₂ means **one litre** of this sample of H₂O₂ on decomposition gives **20L of O₂** gas at **STP**.

Decomposition of H₂O₂ is given as :

- **Molarity of H₂O₂ (M) = $\frac{\text{Volume strength of H}_2\text{O}_2}{11.2}$**

Strength (in g/L) : Denoted by S

Strength = Molarity × Mol. wt = Molarity × 34

Hardness of water (Hard water does not give lather with soap)

Temporary hardness - due to bicarbonates of Ca & Mg

Permanent hardness - due to chlorides & sulphates of Ca & Mg. There are some method by which we can soften the water sample.

- (a) By boiling : $2\text{HCO}_3^- \longrightarrow \text{H}_2\text{O} + \text{CO}_2 + \text{CO}_3^{2-}$ **or**
By Slaked lime : $\text{Ca}(\text{HCO}_3)_2 + \text{Ca}(\text{OH})_2 \longrightarrow \text{CaCO}_3 + 2\text{H}_2\text{O}$
 $\text{Ca}^{2+} + \text{CO}_3^{2-} \longrightarrow \text{CaCO}_3$
- (b) By Washing Soda : $\text{CaCl}_2 + \text{Na}_2\text{CO}_3 \longrightarrow \text{CaCO}_3 + 2\text{NaCl}$
- (c) By ion exchange resins : $\text{Na}_2\text{R} + \text{Ca}^{2+} \longrightarrow \text{CaR} + 2\text{Na}^+$
- (d) By adding chelating agents like $(\text{PO}_4^{3-})_3$ etc.

Measurement of Hardness :

Hardness is measured in terms of ppm (parts per million) of CaCO₃ or equivalent to it.

$$\text{Hardness in ppm} = \frac{\text{mass of CaCO}_3}{\text{Total mass of solution}} \times 10^6$$

Solved Examples

Ex-17 0.00012% MgSO₄ and 0.000111% CaCl₂ is present in water. What is the measured hardness of water and millimoles of washing soda required to purify water 1000 L water?

Sol. Basis of calculation = 100 g hard water

$$\text{MgSO}_4 = 0.00012 \text{ g} = \frac{0.00012}{120} \text{ mole}$$

$$\text{CaCl}_2 = 0.000111 \text{ g} = \frac{0.000111}{111} \text{ mole}$$

$$\therefore \text{equivalent moles of CaCO}_3 = \left(\frac{0.00012}{120} + \frac{0.000111}{111} \right) \text{ mole}$$

$$\therefore \text{mass of CaCO}_3 = \left(\frac{0.00012}{120} + \frac{0.000111}{111} \right) \times 100 = 2 \times 10^{-4} \text{ g}$$

$$\text{Hardness (in terms of ppm of CaCO}_3) = \frac{2 \times 10^{-4}}{100} \times 10^6 = 2 \text{ ppm}$$

$$\text{CaCl}_2 + \text{Na}_2\text{CO}_3 \longrightarrow \text{CaCO}_3 + 2\text{NaCl}$$

$$\text{NaSO}_4 + \text{Na}_2\text{CO}_3 \longrightarrow \text{MgCO}_3 + \text{Na}_2\text{SO}_4$$

$$\therefore \text{Required Na}_2\text{CO}_3 \text{ for 100g of water} = \left(\frac{0.00012}{120} + \frac{0.000111}{111} \right) \text{mole}$$

$$= 2 \times 10^{-6} \text{ mole}$$

$$\therefore \text{Required Na}_2\text{CO}_3 \text{ for 1000 litre water} = \frac{2 \times 10^{-6}}{100} \times 10^6 = \frac{2}{100} \text{ mole} (\because d = 1 \text{ g/mL})$$

$$= \frac{20}{1000} \text{ mole} = 20 \text{ m mole}$$

Strength of Oleum :

Oleum is SO₃ dissolved in 100% H₂SO₄. Sometimes, oleum is reported as more than 100% by weight, say y% (where y > 100). This means that (y - 100) grams of water, when added to 100 g of given oleum sample, will combine with all the free SO₃ in the oleum to give 100% sulphuric acid.

Hence, weight % of free SO₃ in oleum = 80(y - 100)/18

Solved Examples

Ex-18 What volume of water is required (in mL) to prepare 1 L of 1 M solution of H₂SO₄ (density = 1.5 g/mL) by using 109% oleum and water only (Take density of pure water = 1 g/mL).

Sol. 1 mole H₂SO₄ in 1L solution = 98 g H₂SO₄ in 1500 g solution = 98 g H₂SO₄ in 1402 g water.

Also, in 109% oleum, 9 g H₂O is required to form 109 g pure H₂SO₄ & so, to prepare 98 g H₂SO₄, water needed is 9/109 × 98 = 8.09 g.

Total water needed = 1402 + 8.09 = 1410.09 g = **1410.09 mL**

MISCELLANEOUS SOLVED PROBLEMS (MSPS)

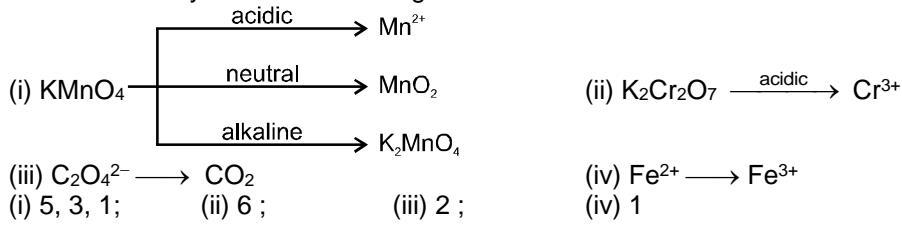
1. Find the valency factor for following acids

(i) CH₃COOH (ii) NaH₂PO₄ (iii) H₃BO₃

Ans. (i) 1 (ii) 2 (iii) 1

2. Find the valency factor for following bases :

(i) Ca(OH)₂ (ii) CsOH (iii) Al(OH)₃


Ans. (i) 2 (ii) 1 (iii) 3

3. Find the valence factor for following salts :

(i) K₂SO₄.Al₂(SO₄)₃.24H₂O (ii) CaCO₃

Ans. (i) 8 (ii) 2

4. Find the valency factor for following redox reactions :

Ans.

(i) 5, 3, 1; (ii) 6; (iii) 2; (iv) 1

5. Calculate the normality of a solution obtained by mixing 50 mL of 5 M solution of $\text{K}_2\text{Cr}_2\text{O}_7$ and 50 mL of 2 M $\text{K}_2\text{Cr}_2\text{O}_7$ in acidic medium.

Sol. v.f. of $\text{K}_2\text{Cr}_2\text{O}_7 = 6$

$$\text{so } N_f = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2} = \frac{5 \times 6 \times 50 + 2 \times 6 \times 50}{50 + 50} = 21 \text{ N}$$

6. Calculate the normality of a solution containing 13.4 g of Sodium oxalate in 100 mL Sol.

Sol. Normality = $\frac{\text{wt. in g/ eq. wt}}{\text{vol. of solution in litre}}$

Here, eq. wt. of $\text{Na}_2\text{C}_2\text{O}_4 = 134/2 = 67$

$$\text{so } N = \frac{13.4/67}{100/1000} = 2\text{N}$$

7. The number of moles of ferrous oxalate oxidised by one mole of KMnO_4 in acidic medium is :

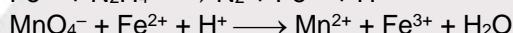
(A) 5/2 (B) 2/5 (C) 3/5 (D) 5/3

Sol. Eq. of FeC_2O_4 = Eq. of KMnO_4

moles of $\text{FeC}_2\text{O}_4 \times 3$ = moles of $\text{KMnO}_4 \times 5$

so, moles of $\text{FeC}_2\text{O}_4 = 5/3$ Ans. (D)

8. How many moles of KMnO_4 are needed to oxidise a mixture of 1 mole of each FeSO_4 & FeC_2O_4 in acidic medium ?


(A) 4/5 (B) 5/4 (C) 3/4 (D) 5/3

Sol. Eq. of KMnO_4 = Eq. of FeSO_4 + Eq. of FeC_2O_4

moles of $\text{KMnO}_4 \times 5$ = moles of $\text{FeSO}_4 \times 1$ + moles of $\text{FeC}_2\text{O}_4 \times 3$

\therefore moles of $\text{KMnO}_4 = 4/5$ Ans. (A)

9. A sample of hydrazine sulphate [$\text{N}_2\text{H}_6\text{SO}_4$] was dissolved in 100 mL water. 10 mL of this solution was treated with excess of FeCl_3 Sol. Ferrous ions formed were estimated and it required 20 mL of M/50 KMnO_4 solution in acidic medium.

(a) Write the balanced redox reactions.

(b) Estimate the amount of hydrazine sulphate in one litre of Sol.

Sol. (a) Given $4\text{Fe}^{3+} + \text{N}_2\text{H}_4 \rightarrow \text{N}_2 + 4\text{Fe}^{2+} + 4\text{H}^+$

(b) In 10 mL solution, eq. of $\text{N}_2\text{H}_6\text{SO}_4$ = Eq. of Fe^{2+} = Eq. of KMnO_4


$$= 20 \times \frac{1}{50} \times 5 \times 10^{-3} = 2 \times 10^{-3}$$

v.f. of $\text{N}_2\text{H}_6\text{SO}_4 = 4$

$$\text{so, weight of } \text{N}_2\text{H}_6\text{SO}_4 \text{ in 1 L solution} = \frac{2 \times 10^{-3} \times 1000}{4 \times 10} \times 130 = 6.5 \text{ g.}$$

10. Write the balanced redox reaction and calculate the equivalent weight of oxidising agent and reducing agent for titration of $\text{K}_2\text{Cr}_2\text{O}_7$ Vs Ferrous ammonium sulphate.

Ans. The reaction : $6[\text{FeSO}_4(\text{NH}_4)_2\text{SO}_4 \cdot 6\text{H}_2\text{O}] + \text{K}_2\text{Cr}_2\text{O}_7 + 7\text{H}_2\text{SO}_4 \rightarrow$

$$\text{Redox changes : } \left(E_{\text{FeSO}_4} = \frac{M}{1} \right); \left(E_{\text{K}_2\text{Cr}_2\text{O}_7} = \frac{M}{6} \right)$$

11. One litre of acidified KMnO_4 solution containing 15.8 g KMnO_4 is decolorized by passing sufficient SO_2 . If SO_2 is produced by FeS_2 , what is the amount of FeS_2 required to give desired SO_2 ?

Ans. 15 g.

Sol. v.f. of KMnO_4 = 5 & v.f. of SO_2 = 2

Now, Eq. of KMnO_4 = Eq. of SO_2

$$\frac{15.8}{158/5} = \text{moles of } \text{SO}_2 \times 2$$

so, moles of $\text{SO}_2 = 1/4$

Now, applying POAC on S, we get :

$$2 \times \text{mole of } \text{FeS}_2 = 1 \times \text{moles of } \text{SO}_2$$

$$\text{so, moles of } \text{FeS}_2 = \frac{1}{4} \times \frac{1}{2} = \frac{1}{8}$$

$$\text{so, weight of } \text{FeS}_2 = \frac{1}{8} \times 120 = 15 \text{ g.}$$

12. An aqueous solution containing 0.1 g KIO_3 (formula weight = 214) and an excess of KI was acidified with HCl. The liberated I_2 consumed 45 mL of thiosulphate. The molarity of sodium thiosulphate solution is :

The reaction involved is : $\text{IO}_3^- + \text{I}^- + \text{H}^+ \longrightarrow \text{I}_2 + \text{H}_2\text{O}$

$$(\text{A}) 0.0623 \text{ M}$$

$$(\text{B}) 0.0313 \text{ M}$$

$$(\text{C}) 0.126 \text{ M}$$

$$(\text{D}) 0.252 \text{ M}$$

Sol. $\text{IO}_3^- + 5\text{I}^- + \text{H}^+ \longrightarrow 3\text{I}_2 + \text{H}_2\text{O}$

$$\text{Now, Moles of } \text{KIO}_3 = \frac{0.1}{214}$$

$$\text{So, Moles of } \text{I}_2 = 3 \times \frac{0.1}{214}$$

$$\text{Now, Moles of } \text{Na}_2\text{S}_2\text{O}_3 = 2 \times 3 \times \frac{0.1}{214}$$

$$\therefore M \times V_L = 2 \times 3 \times \frac{0.1}{214} \quad \therefore M \times \frac{45}{1000} = 2 \times 3 \times \frac{0.1}{214}$$

$$\text{Now, Molarity of hypo solution} = 2 \times 3 \times \frac{0.1}{214} \times \frac{1000}{45} = 0.0623 \text{ M} \quad \text{Ans. (A)}$$

13. Calculate the percentage of available chlorine in a sample of 3.55 g of bleaching powder which was dissolved in 100 mL of water. 25 mL of this solution, on treatment with KI and dilute acid, required 20 mL of 0.125 N sodium thiosulphate Sol.

Ans. 10 %

Sol. $\text{CaOCl}_2 + \text{H}_2\text{O} \longrightarrow \text{Ca}(\text{OH})_2 + \text{Cl}_2$

$$\text{In 25 mL solution, moles of } \text{Na}_2\text{S}_2\text{O}_3 = \frac{20}{1000} \times \frac{0.125}{1} = 25 \times 10^{-4}$$

$$\text{So, moles of } \text{I}_2 = \frac{1}{2} \times \text{moles of } \text{Na}_2\text{S}_2\text{O}_3$$

$$= \frac{1}{2} \times 25 \times 10^{-4} = 12.5 \times 10^{-4}$$

$$\text{So, in 100 mL solution, moles of } \text{Cl}_2 = 4 \times 12.5 \times 10^{-4} = 50 \times 10^{-4}$$

$$\text{So, weight of } \text{Cl}_2 = 50 \times 10^{-4} \times 71 \text{ g}$$

$$\% \text{ of available } \text{Cl}_2 = \frac{50 \times 10^{-4} \times 71}{3.55} \times 100 = 10\%$$